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ABSTRACT

Superconducting magnet systems under construction
and projected for the future contain magnets that are
magnetically coupled and electrically connected with
shared power supplies. A change in one power supply
voltage affects all of the magnet currents. A current
controller for these systems must be designed as a
multivariable system. The paper describes a method,
based on decoupling control, for the rational design
of these systems. Dynamic decoupling is achieved by
cross-feedback of the measured currents. A network
of gains at the input decouples the system statically
and eliminates the steady-state error. Errors are
then due to component variations. The method has
been applied to the magnet system of the MFTF-B.
at the Lawrence Livermore National Laboratory.

*Work performed under the auspices of the U. S.
Department of Energy by the Lawrence Livermore
National lLaboratory under contract number
W-T7405-ENG-48.

INTRODUCTION

In the past the design of current control systems
for superconducting magnets has focused on single
isolated coils.! The construction of complex systems
of superconducting magnets, connected together
electrically and coupled magnetically, brings new
control problems. An interconnected system cannot
always be separated into isolated control systems. In
general the magnets must be treated as a
multivariable system. In a multivariable system a
change in one of the inputs affects all of tha outputs
and a transient disturbance is felt throughout the
system.

The MFTF-B magnet system,2 to which the
method described in this paper has been applied, is a
good example of fusion magnet systems of the
future. There are 42 superconducting magnets, all
coupled to a greater or lesser extent magnetically.
Eight of the magnets are connected electrically in
pairs with a common main power supply and a trim
power supply. This configuration is used as an
example in this paper. Twelve of the magnets are
connected together with a main supply and several

trim supplies.? The remaining coils, although linked
magnetically to the others, have their own supplies.

It was found that the coils with their own
supplies can be dessigned as separate, single variable
systems. However, when the magnets are connected
together with common power supplies, the electrical
coupling cannot be ignored and the current control
must be designed for the connected coils as a
multivariable system.

A brief description of the coils and the system
requirements will indicate the scope of applications
covered by this paper. The multivariable magnets
have inductances below 10 H, cable resistances in the
milliochm range or below, and magnetic coupling
coefficients to the nearest magnet that can be as
high as .8. The power supplies are unfiltered
thyristor devices, necessitating a filter in the current
feedback path. Each supply has its own voltage
control feedback loop, the current control is
superimposed on this control system.

The current must be set to an accuracy of
0.25%, a requirement that puts a bound on the error
in the current controller. The dynamic response is
fixed by a settling time requirament. The current
must settle to one part in 40,000 in five minutes.

Multivariable control is a well developed branch
of automatic control theory. An introduction to the
methods can be found in the book by Brogan? while
Wonham has written an advanced text.> The method
in this paper is derived from work on decoupling
control, a subset of multivariable control theory.
Decoupling control was first described by Falb and
Wolovich.5 A definitive summary is due to Morse and
Wonham.?

As has been mentioned, in a multivariable
system the inputs and outputs are so coupled that
each input affects all of the outputs. The
dependence of each output in all of the inputs may
apply to the dc steady state as well as to the dynamic
behavior. A decoupling controller simplifies the
control of the system so that each input affects only
a corresponding output. Dynamic decoupling is
accomplished by means of feedback networks that



cause each error signal to depend on all of the
measured outputs. Static decoupling can be achieved
by a network of gains that form a modified reference
input from all of the refersnce inputs.

This paper takes a known theory, multivariable
control theory, and applies it to a new application,
the control of current in magnetically and
electrically coupled superconducting coils. HHowever,
the application is not entirely straightforward.
Decoupling control is only possible for a simplified
system. A procedure is outlined for designing the
controller, based on a simplified system and then
testing the design on a representation closer to the
actual system. In addition, it is shown how the
steady state error can be eliminated by the same
network that statically decouples the system. The
remaining error, which is dus to changes in the
system components, is calculated as part of the
design procedure.

The design procedure outlined provides a
systematic method of designing the control system.
The resultant dasign is easy to implement, either by
analog circuits or in a digital controller.

THE COIL NETWORK

The MFTF-B coils connected in pairs with a
main power supply and a trim are used as an
example. Howaever, the method is applicable to other
configurations and is used. in fact, in the design of
the 12 electrically connected MF TF -B magnets.

The network is shown in Figure |. The two coils
in the center share a main and a trim power supply,
the voltage vz represents the main supply, vy the
trim supply. Two separate coils not connected
electrically but coupled magnetically are shown.
These coils represent the most closely coupled
adjacent magnets. The circuit madsl includes the
cable resistances Rm|, Rmgy, and Ry and the dump
resistors Rqj and Ryj.

A state equation,B with the coil currents as the
state variables is conveniently derived by defining
loop currents as shown in the figure. Following the
paths traced out by the coil currents yields the
following matrix voltage law equation

L di+Ri+igg+wv=0,
dt
where L, R, and W are 5 by 5 square matrices as

defined in the Appendix and i, ig, and v are the
current and voltage vectors.

Applying the voltage law to the loop around the
coils and the dump resistors yields
L di=Ryig
dt

or
ig=Rg ~lLdi.
dt
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Figure 1. Two electrically connected coils sharing

the same power supplies and two adjacent magnet-
lcally coupled coils.

Substituting this result into the previous
equation leads to the state equation of the network

di=-(L+RRy I IRI-L+RRy W) lwy
dt
= Apli+Bpv.

THE CLOSED LOQOP SYSTEM

The closed loop current control system is shown
in Figure 2. The coil current, which is the output, is
converted into a voltage by a current shunt and
amplifier. A filter then removes some of the power
supply ripple. The remainder of the feedback path
consists of a network of gains that allow crossfeed-
back. In the forward path are gain elements, the
valtage regulated power supplies, and the network
itself. Gp is an open-loop error compensator and
static decoupler.

Three parts of the closed loop system, the
network, the Filters, and the voltage requlators
contain energy storage elements, the remaining
elements are simple gains. The energy storage
elements are represented by state variable
equations. In all, there are 15 state variables, five
coil currents i, five filter voltages v¢, and five power
supply voltages v.



Figure 2. A block diagram of the closed loop current
control system.

The state equation for the network has already
been written. A first order representation is used for
the filters

dvg = - Hp ve + Hf v
dt

where Hs is a 5 by 5 diagonal matrix which, like the
the other matrices in this section is written
out in full in the Appendix.

The voltage requlators are represented by their
most signficant poles

dv = - Gyv + Gyvg
dt

where G, is a 5 by 5 diagonal matrix.

The dynamic eloments are linked by the non-
dynamic gains

ve = Hg vf
Vs = Gk Ve
vm = Gp vp

and vji=Hgi.
F rom the connections shown in Figure 2
vg = GiGpvp - GyHeve -

Using these last several equations the state
equations are written in terms of the state variables
only

dvf = - Hpvg x Hf Hg i
dt

dv = - Gyv - Gy Gk He vi + Gy G Gpvr .«
dt

These last two equations and the network
equation are assembled to form the state equation of
the closed loop system. It is written below in
partitioned form

(=Y
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d—{ n n
dv.| = |HH -H 0 v.| + 0 v
dtf f's f f r
dv 0 -GvaHc -6 v GvaGr
dt
ordx = A x +Bvp. ()
dt

And finally, it should be noted that the coil
currents are the output of the system

output =1i.
THE STEADY STATE ERROR

The accuracy to which the current can be set in
the dc steady state, after the transients have died
away, is one of the system requirements., An
important contributor to the error is the steady state
error of the closed loop system. All closed loop
systems without an integrator in the loop have a
steady state error for a constant input. A difference
between the output and the reference input is
required in order to maintain the control effort.

The steady state error can be derived from the
state eguation by setting the derivatives to zero. Ir
the dc steady state all the transients have died away
and the state variables are constant. For the
network state equations

RIl+ WV =0.

Upper case letters are used to denote the dc steady
state values of the variables.

The filters and voltage regulators become unity
gains, causing the closed loop system to degenerats
into the block diagram shown in Figure 3. From this
figure,

V = Gy (GpVp - HeHgh.

Substituting in the network equation and rearranging
yields

1 = (GyHcHg -W-IR)- LG GrVr - @

Figure 3. A block diagram of the closed loop system
for the dc steady state. This diagram also represerits
the simplifiad system.



in general this expression is not amenabla to
algebraic analysis. However, for the network shown
in Figure 1, the wmutual coupling between the
electrically connected coils and the other two coils is
zero in the dc steady state. Therefore, the above
equation degenerates into three uncoupled equations,
a coupled pair for the connected coils and two single
equations for the isolated coils.

For the coupled coils the steady state error in
the twa currents is interdependent. That is, the error
in one of the currents depends not only on the setting
of that current but on the other current as well.
Algabraic and numerical investigation shows that the
error caused by I3 on I3 has the opposite sensa to the
error caused by Iy on ls. The magnitudes of the
errors dspend on a ratio of the cable resistancaes and
gains and are not in general equal. But, as is the case
in single variable systems, the steady state error is
reduced by increasing the gain.

The steady state error can be thought of as a
calibration error that can be removed by adjusting
the calibration. The adjustment is made by changing
the value of the reference input by means of a gain.
This is one of the functions of Gy, the open loop gain
elemant at the input. The other function of Gy is to
daecouple the currents statically. Without G, a
change in one reference input affects both dc
currents, G, causes each of the inputs to affect only
one current.

The desired dc steady state relationship between
the refaerence input and the current is

1 =Dvy

where 0 = | _1 0
h
s
0 A
h
s
The value of Gy that decouples the static system and
eliminates the steady-state error is found by
comparing this equation with the equation for the

steady state closed loop behavior, Equation 2. To
achieve the goal let

D = (GHcHg - W IR LG G .
This equation can be solved for G,
Gy = (HeHs - Gy ~'w-IR)D . (3)

Gy perfectly eliminates the error only if the
system wvalues used to calculate Gy are exactly the
same as the actual values. If the values are nat
known exactly, or if they change, there is an error.
The main contributors to this error are the cable
rasistances, which depend on temperature. The error
can be calculated if the temperature range of the
cables is known. Like the classic steady state error,
this error is reduced by increasing the loop gain.

DYNAMIC DECOUPLING

Although G, decouples the steady state currents
the system remains coupled dynamically. That is, a
change in one of the refersnce inputs causes a
transient in all of the currents.

In addition, without a systematic method the
design of a multivariable feedback system is difficult.
Decoupling control provides such a technique.

It is neither possible, nor necessary to decouple
all of the system modes. The dynamic behavior of
tha system is dominated by the natural frequencies of
the coil natwork. The time constants of the circuit
are orders of magnitude slower than the time
constants of the voltage regulators and the filters.
Furthermore, only the coil network contributes ta the
dynamic coupling of the system. Therefore, it is
reasonable to base the contro!l system design on the
circuit alone.

Replacing the filters and the voltage regulators
by unity gain reduces the block diagram to that
shown in Figure 3. There is only one state variable,
the coil current, which is also the output.

The state equation is

g! = Ani + BnV
dt

and v = GE(Gpvp - HcHg 1) .

fFrom these two equations the state equation of
the simplified closed loop system is written.

di = (Aq - BrGiHgHgl + BrGuGpve
at

= Ag 1+ Bgvp .

The simplified equation has a nonsingular Bg
matrix that is amenable to the design of a decoupling
faadback system. Dynamic decoupling is obtained if

P = Ap - BaGytHicHg

where P is a diagonal matrix with the diagonal
elements equal to the desired poles of the closed loop
system. 1he feedback gains that decouple the system
and cause the system to have the desired poles are
obtained by solving for Hg

He = Gelealag - P Hgl . (4)

In general the equation 1is intractable to
algebraic solution and H, must be evaluated
numerically.

THE DESIGN PROCEDURE

The design procedure can be summarized briefly.
The desired closed loop poles are chosen, and using
the simplified system H., the feedback matrix and
then G the input decoupling matrix are calculated.



The designs are tested by calculating the closed loop
poles and error of the full scale system when this
system contains the calculated values of Gy and Hg.

The poles are chosen from a range extending
from the dominant open loop poles to poles two or
three orders of magnitude faster. If all of the coils
have the same required dynamic response, the desired
poles, for each dsesign, are equal.

The dynamic decoupling matrix Hg is calculated
for the simplified system from Equation 4. ln making
this calculation the gains G can be set at a nominal
value. The product GiH. determines the loop gain,
consequently the contribution of each factor can be
arbitrarily assigned.

After Hg has been calculated Gp can be
calculated from Equation 3.

Each design resulting from a choice of P is
evaluated by calculating the dynamic response and
error of the full scale system containing the voltage
reqgulators and the filters. The poles of the full scale
closed loop system are found by substituting the
calculated values of Hg in the A matrix of Equation 1,
and finding its characteristic values.

The steady state error caused by changes in the
system parameters is calculated from Equation 2, the
equation relating the steady state current to the
reference inputs. The value of Gy, calculated using
nominal values of the system parameters is used in
this equation. If the same values are used in the
remaining matrices of Equation 2, the steady state
error is zero. The error due to component changes is
investigated by using the range of parameter values
in the other matrices while holding Gy at the nominal
value. In general, one componant dominates the
error, consequently the calculations can be confined
to the range of this component.

The calculations can be made by means of a
digital computer. In our work, the entire design
procedure is combined in a single program, with the
desired poles, system components, and variation of
the components as the input and the closed loop poles
and error of the full scale system as the output.

A final step in the design procedure is ta simu-
late the network and closed loop control system using
a computer network and system simulation code.
Simulation provides an independent check on the de-
sign, and allows the inclusion of nonlinear or other
properties not encompassed by the design method.
The designer can also view the system's time behavior
and test operating modes before the system is built.

THE RESULTS

The first step in the design procedure, choosing
the desired poles of the closed loop system, indirectly
specifies the loop gain. As the speed of the desired
poles increases, the values of H. increase, increasing
the loop gqain.

The decoupling feedback gains H¢ are calculated
for a simplified system and then tested in the full
scale system that more closely resembies the actual
system. When the desired poles are slow the poles of
both systems are similar. As the desired poles are
speeded up, but are still overdamped, the poles of the
full scale system become oscillatory and finally
unstable. However, and this is an important point,
the poles of the full scale system remain grouped
together.

At low gains the dynamics of the voltage
regulator and filter, which are not accounted for in
the simplified system, are dominated by the network
poles. At high gains the slowest of these poles
contribute to the response.

The decoupled designs were compared with
systems without crossfeedback gains designed by trial
and error methods. All of the designs studied had a
dominant closed loop pole and other lesser pales as
contrasted with the grouped poles of the decoupled
design. The result is that for a given dynamic
response, as measured by the dominant pole, a high
gain, and lesser error, can be achieved using
decoupling feedback.

CONCLUSIONS

A method of designing the current control
systems for magnetically coupled and electrically
connected superconducting magnets has been
presented. The method, based on a simplified
decoupling control, rationalizes the design procedure
and produces a superior system. The controller,
which consists of gain elements is easily implement-
ed. Using the method it has been possible to meet
the design requirements of the MF TF -B magnets.
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